54,330 research outputs found

    Clutter free synthetic aperture radar correlator

    Get PDF
    A synthetic aperture radar correlation system including a moving diffuser located at the image plane of a radar processor is described. The output of the moving diffuser is supplied to a lens whose impulse response is at least as wide as that of the overall processing system. A significant reduction in clutter results is given

    Surface roughness measuring system

    Get PDF
    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system

    Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    Get PDF
    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner

    Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    Get PDF
    A method and apparatus are described for single frequency multibeam imaging of multiple strips of range swath at high range intervals for those applications where it is desirable to cover a range swath much greater than is possible for a given interpulse interval. Data from a single frequency synthetic aperture radar (in which beam parameters are adjusted so that the return from each successive swath is received during successive interpulse periods) are separated in Dopple frequency for the return from each beam at the frequency plane of the processor. Alternatively, the image formed by each beam may be spatially separated in the azimuth direction and successively selected by positioning an appropriate slit in the recording plane of the processor

    Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity

    Get PDF
    Structure characterization and classification is frequently based on local environment information of all or selected atomic sites in the crystal structure. Therefore, reliable and robust procedures to find coordinated neighbors and to evaluate the resulting coordination pattern (e.g., tetrahedral, square planar) are critically important for both traditional and machine learning approaches that aim to exploit site or structure information for predicting materials properties. Here, we introduce new local structure order parameters (LoStOPs) that are specifically designed to rapidly detect highly symmetric local coordination environments (e.g., Platonic solids such as a tetrahedron or an octahedron) as well as less symmetric ones (e.g., Johnson solids such as a square pyramid). Furthermore, we introduce a Monte Carlo optimization approach to ensure that the different LoStOPs are comparable with each other. We then apply the new local environment descriptors to define site and structure fingerprints and to measure similarity between 61 known coordination environments and 40 commonly studied crystal structures, respectively. After extensive testing and optimization, we determine the most accurate structure similarity assessment procedure to compute all 2.45 billion structure similarities between each pair of the ≈70000 materials that are currently present in the Materials Project database

    The role of magnetic fields in the scattering of p-modes

    Get PDF
    Aims. We determine the direct and indirect effects of magnetic field on p-mode scattering. Methods. We solve a set of magnetohydrodynamic equations using the Born approximation to determine phase shifts in p-modes due to a region of inhomogeneity. The region of inhomogeneity is a magnetic flux tube with the characteristics of flaring field lines. This enables us to investigate the magnetic field effects on the phase shifts. Results. The magnetic configuration of our flux tube model plays a vital role in the phase shifts of p-modes. The suppression of sound speed and pressure within the flux tube region is not the only factor to consider in the scattering of p-modes. There is a direct effect of the magnetic fields caused by the flaring of field lines on phase shifts

    Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach

    Full text link
    Following the semiclassical formalism of Strutinsky et al., we have obtained the complete eigenvalue spectrum for a particle enclosed in an infinitely high spheroidal cavity. Our spheroidal trace formula also reproduces the results of a spherical billiard in the limit η→1.0\eta\to1.0. Inclusion of repetition of each family of the orbits with reference to the largest one significantly improves the eigenvalues of sphere and an exact comparison with the quantum mechanical results is observed upto the second decimal place for kR0≥7kR_{0}\geq{7}. The contributions of the equatorial, the planar (in the axis of symmetry plane) and the non-planar(3-Dimensional) orbits are obtained from the same trace formula by using the appropriate conditions. The resulting eigenvalues compare very well with the quantum mechanical eigenvalues at normal deformation. It is interesting that the partial sum of equatorial orbits leads to eigenvalues with maximum angular momentum projection, while the summing of planar orbits leads to eigenvalues with Lz=0L_z=0 except for L=1. The remaining quantum mechanical eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few spurious eigenvalues arise in these partial sums. This result establishes the important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure

    Number of adaptive steps to a local fitness peak

    Full text link
    We consider a population of genotype sequences evolving on a rugged fitness landscape with many local fitness peaks. The population walks uphill until it encounters a local fitness maximum. We find that the statistical properties of the walk length depend on whether the underlying fitness distribution has a finite mean. If the mean is finite, all the walk length cumulants grow with the sequence length but approach a constant otherwise. Experimental implications of our analytical results are also discussed
    • …
    corecore